PRELUDE FLNG
A STORY OF INNOVATION

- Prelude FLNG Project Overview
- Managing Innovations in a MegaProject
 - Side-by-side Offloading
 - Turret & Mooring
 - Water Intake Risers

Mike Efthymiou
Professor of Offshore Engineering
University of Western Australia
October 2017
DEFINITIONS AND CAUTIONARY NOTE

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Resources plays: Our use of the term “resources plays” refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this document refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2014 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 6 October 2015. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No. 1-32257, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
PRELUDE FLOATING LNG

- Facilities for gas production, liquefaction, storage of LNG, LPG and condensate & direct offloading to market – all on FLNG
- Designed to be permanently connected and permanently manned
- Designed to survive 10,000 year environmental conditions, including tropical cyclones
- FLNG Facility is 488m long, 74m wide – largest vessel ever

LNG : 3.6 mtpa
LPG : 0.4 mtpa
Condensate: 1.3 mtpa
MAJOR PROJECT MILESTONES IN 2017:
SAILAWAY FROM SAMSUNG (END JUNE) & ARRIVAL IN AUSTRALIA (END JULY)
Prelude FLNG
A STORY OF INNOVATION

- Prelude FLNG Project Overview
- Managing Innovations in a MegaProject
 - Side-by-side Offloading
 - Turret & Mooring
 - Water Intake Risers

Mike Efthymiou
Professor of Offshore Engineering,
University of Western Australia (UWA)
Technology Development and Project Delivery are two distinct activities.

Project Delivery
- **Identify & Assess**: Assess opportunity
- **Concept Select**: Select development option
- **Define (FEED)**: Front end engineering
- **Execute**: Design, Construction, Installation

Technology Development
- **Discover**: “proof of concept”
- **Develop**: Mature components
- **Demonstrate**: Scaling, piloting, field trials
- **Deploy**: QA/QC, FAT

- It is always preferable to develop and demonstrate a new Technology prior to implementation in a major Project.
- PRELUDE FLNG characterised by innovation (gamechanging) & large scale (largest floating vessel). Hence it is stretching the boundaries.
MANAGING INNOVATIONS IN A MEGA-PROJECT

- Need to get it right first time; build in redundancy (belts & braces, e.g. load path thru chain and rubber hose in RHA).
- Limit new innovations in a Mega-Project. When new innovations are needed, recognise this early on and focus on it.
- Recognise that technology maturation does not end at “proof of concept”. Plan for further maturation & testing during FEED & Execute Phases.

Offloading (2004-2015). Assign responsibility for technology sign-off to TA1 & TA2 (Parallel process to project delivery). Engineering Manager maintains project delivery role.

- Technology step outs in existing concepts are harder to recognise. Treat as new technology.

“Technology step out”
Helical strakes on risers (installation load step out)
PRELUDE FLNG: SIDE-BY-SIDE OFFLOADING LNG & LPG

- Offloading of LNG & LPG will be carried out in side-by-side arrangement in open sea for 1st time
- Operation: LNG Carrier approach, berthing, offloading, departure
- FLNG is provided with thrusters to facilitate birthing and optimize heading during offloading

- Challenge recognised ~ 2004. Several JIPs: Motion of 2 floating bodies in proximity; sloshing in LNGC tanks
- Bridge simulations to develop procedures & train personnel.
- S-by-s feasibility is project specific; depends on env. conditions & vessel characteristics. Confirm feasibility during FEED & EXECUTE
- Dedicated Offloading Arms: Finalize development in EXECUTE

OFFLOADING CRITERIA

- Wind speed
- Wave height
- Line loads
- Fender loads
- **LNG Carrier Roll**
- Offloading Arm X, Y, Z
- Vessel clearance
- Tug operability
Heading of the FLNG:

- Often governed by wind and current direction

- For certain periods of the year, wind and current dictate FLNG heading and swell arrives at 90°, resulting in roll of the LNGC

- Offloading downtime governed by LNGC Roll

October 2017
Prelude FLNG offloading operability evaluated by analysing motion of 2 floating bodies (s-b-s) using local operating conditions (e.g. for 40 years).

- A 3-hr sea state is denoted as **Uptime** when all acceptance criteria (e.g. LNGC roll) are satisfied. If 10 successive sea states are **Uptime** then offloading operation (30 hrs) can be performed.

- Estimate % operability for the offloading operation in each month & each year.

- Conclusion that offloading operability is significantly influenced by LNGC roll, especially in July-September.

Thruster assistance in July-September improves Offloading operability significantly.

Requirements for offloading arms (X, Y, Z displacements) and accelerations defined.
NEW CRYOGENIC OFFLOADING ARMS

CONVENTIONAL LOADING ARM
- Used for Jetty-to-carrier offloading
- High stresses on LNG-carrier manifold

NEW CONCEPT DEVELOPED BY SHELL & FMC
- Lower stresses on carrier manifold
- Simplified operation & maintenance

¼ Size Model manufactured & tested under extreme combinations of:
(i) Displacements: X_{rel}, Y_{rel}, Z_{rel};
(ii) Loads on LNG-Carrier manifold;
(iii) Connecting phase accelerations & loads.
FULL SCALE TESTING OF 1ST OFFLOADING ARM - 2014

Prelude Offloading Arm undergoing Factory Acceptance Testing (FAT); testing of emergency disconnection under cryogenic conditions with liquid Nitrogen.
EFFECT OF LNG SLOSHING ON LNGC ROLL MOTION & ON OPERABILITY

Prelude FLNG operability analyses based initially on ballasted LNGC. Recognised that more severe situations may occur during filling conditions. Problem rather complex (motion of 2 vessels s-b-s further complicated by sloshing)

Testing carried out by UWA/Shell/Shanghai examined sloshing and intermediate filling conditions

- Ballasted Case gives most severe response in beam seas
- 25% full gives most severe response in quartering seas
PRELUDE FLNG
A STORY OF INNOVATION

- Prelude FLNG Project Overview
- Managing Innovations in a MegaProject
 - Side-by-side Offloading
 - Turret & Mooring
 - Water Intake Risers

Mike Efthymiou
Professor of Offshore Engineering,
University of Western Australia (UWA)
TURRET STRUCTURE

- Largest Turret ever built – designed to satisfy 10,000 yr conditions
- Several technology step outs

October 2017
TURRET WEATHERVANING BEARING SYSTEM

- Axial bogies: Carry vertical loads on turret including mooring line loads: ~proprietary, standard size ~ existing
- Radial wheels: Resist horizontal loads due to vessel motions
- Lower pads: designed to come into contact only in extreme & survival conditions.
 - They limit horizontal loads on radial wheels and reduce bending moment acting on the bogies
- Turret-hull interface loads depend crucially on gap at lower pads. Nominal gap=30mm. Tolerance 10mm. Turret rotated in hull taking tolerance measurements to ensure that tolerances are met at all locations
Mooring system among largest ever made; Chain diameter = 175mm, Strength = 2500T, Line length ≈ 1500m.

Technology step outs in: (i) identifying critical 10,000 yr conditions for each system, (ii) low friction bushings, (iii) Fatigue of chain under Out-of-Plane bending, hawser size, interlink stiffness.

Low friction bushings, qualified to higher loads, approved by DnV and have been manufactured.

Pile size & installation in calcareous soils is a technology step out: challenge to control freefall & reach target penetration: Clump weight tool developed and implemented.
FLNG MOORING & PILES

- All piles successfully installed in 2016 reaching target penetration, mooring lines prelaid in 2016
- Mooring lines picked up and connected to FLNG in August 2017 – PRELUDE is declared “storm safe”
PRELUDE FLNG
A STORY OF INNOVATION

- Prelude FLNG Project Overview
- Managing Innovations in a MegaProject
 - Side-by-side Offloading
 - Turret & Mooring
 - Water Intake Risers

Mike Efthymiou
Professor of Offshore Engineering,
University of Western Australia (UWA)
WATER INTAKE RISERS

- New concept to deliver 50,000 m³/h of cooling water
- Incentive to go deeper: 150m below sea level
- Sparing philosophy: Allow for 1 spare riser
- Retractable for maintenance & inspection
- 25 years of service life
- Concept development started 2004

Avoid collision with moorings & risers

Typical water temperature profile in NW Australia

- Temperature (°C)
- 6-10 °C
WATER INTAKE RISER – CONCEPT SELECTION

Individual risers
- Easy change-out
 - Interferes with marine activity
 - Requires protection balcony
 - Large footprint on deck (piping)

Rubber
- Flexible – can accommodate vessel motion
 - Unknown failure modes
 - Difficult life time prediction

Riser Bundle
- Protected from boat impact
 - Small footprint
 - Dedicated crane to retrieve riser

Steel
- Extensive experience
- Weight just right
 - Rubber only at hull interface
WATER INTAKE RISER CONCEPT

8 @42" WI risers supported around a 30" structural riser

3 riser spacers to avoid collision & ensure bundle behaviour

Helical strakes on 4 corner risers only

RISER HANGER ASSEMBLY
Chain to carry axial load
Rubber to eliminate bending
Low friction bearings

RISER/HULL INTERFACE
Riser Response

- Top rubber connection is very effective; risers behave as moment-free at top
- Max stresses arise from bending under 2nd mode at period = 7sec

Extreme Response

- Analyse riser under many extreme combinations of waves, winds, currents to identify critical cases for design
- Stresses under 100-yr and 10,000 yr conditions acceptable everywhere including steel sections & rubber & chain
- Redundancy:
 - If chain fails, rubber can carry riser weight
 - If rubber fails, chain can carry riser weight

Bending Moments in the riser

SHAPE

October 2017
WATER INTAKE RISER - FATIGUE DESIGN

- Fatigue life governed by local hot spot stresses at welds
- For each sea state in wave scatter diagram, estimate nominal stress ranges using global dynamic analyses, accounting for vessel motion and riser response

Critical Locations

- Girth Weld
- Pipe Wall
- Merlin Connector

Local Stress range distribution

\[
\sigma_{\text{hotspot}} = \sigma_{\text{pipewall}} \cdot SCF_{\text{Geometric}} \cdot SCF_{\text{Mismatch}}
\]

- Girth Weld: Double-sided and dressed flush
- S-N Curve validated using fatigue testing
- Fatigue life targets achieved for all locations

October 2017
Potential for two types of Riser Vibrations

(i) Vibration caused by internal flow in the riser (ii) Vibration caused by external currents (VIV)
Potential for vibration due to entry of water at high speed into a free hanging riser

Topic of Guido Kuiper's PhD Thesis

After Guido's PhD investigation

Theory

Unstable behaviour
for $U_f >$ critical speed, U_c

Experiments

If $U_f > U_c$ we observe small amplitude oscillations (die & re-start)

$U_c = 5$ m/sec

Prelude max speed 2.8 m/sec

Induced stresses are negligible

No concern about vibrations due to internal flow
VIV characteristics

- Vortices shed alternately at Shedding frequency
- If Riser Natural frequency \(\approx \) Shedding Frequency of Vortices, then lock-in
- Amplitude \(\approx 1 \times \text{diameter} \)

What will happen in a bundle of 9 closely spaced risers?
SCENARIO 1: VIV of Bundle as a unit; (displacements ~ 5D)

SCENARIO 2: VIV of individual risers; smaller displacements (displacements ~ 1D)
SCENARIO 3:
Vortex synchronisation on 3 risers induces VIV of entire Bundle (displacement < 1D)

SUPPRESSION OPTION: Install strakes on 4 corner risers only (VIV ???)

VIV Testing of Scenario 3 and SUPPRESSION OPTION
WATER INTAKE RISERS – EXECUTE PHASE

De-risking of new technology - ensure new components perform as intended

- Helical strake tests to qualify for installation (tech. step-out)
- Verify that riser alignment & thicknesses are within tolerance
- Full scale sections of rubber hose tested in tension & torsion
 - Adequate capacity & stiffness in Tension
 - Measure torsion stiffness & torsion fatigue for use in design

WIR De-risking
Review 2016
FLNG is a Game-changer for remote offshore gas.

As far a possible PRELUDE uses proven & tested systems brought together in innovative ways – However, some new concepts:

- **Offloading**: 1st side-by-side offloading of LNG & LPG; extensive simulations and testing to establish operability. New cryogenic Offloading Arm developed & qualified.

- **Turret & Mooring**: biggest ever turret, biggest bearing loads on chainstoppers, bushing qualification, large diameter piles

- **WI Risers**: Largest ever in terms of throughput; new concept, new components, new phenomena

Recognise need for de-risking of new technology through Design & Construction to ensure full-size systems perform as intended – allow time & $ - need to get is right 1st time

In a Mega-Project you deliver value over 25 years so make it last !!