Crest of the Royal National Institution of Naval Architects - Click to return to the homepage

The Royal Institute of Naval Architects

Alfa Laval Sept SMM

Delner Brakes Oct 2018

IJSCT 156

Paper Title: A Three-Dimensional Inverse Method for the Design of Sails

 

Authors

J P Pilate, F C Gerhardt, S E Norris and R G J Flay, Yacht Research Unit, University of Auckland, New Zealand

Summary

This paper investigates an inverse process for the design of yacht sails. The method is described and then applied to the design of optimal sails for a specific yacht. The proposed inverse method generates the three-dimensional shapes of a headsail and mainsail from prescribed loading (i.e. differential pressure) distributions, accounts for the effect of the sea surface, and also simulates the twist and shear of the incoming flow. The uncoupled iterative routine solves a sequence of analysis steps so that the sail shapes are deformed in such a way that their updated loading distributions converge to the specified target distributions. During each iteration equations derived from two-dimensional Thin Aerofoil Theory, calculate a geometry correction from the difference between the current and target loading distributions. This correction is applied to the sail geometry, and a vortex lattice method code calculates the updated three-dimensional differential pressure distributions, which are again compared to the target distributions. Usually only five iterations are required to converge to sail shapes that have the target loading distributions. The inverse method has been validated by inverting the traditional way of analysing sails, i.e. a set of sails with known geometry has been analysed and the loading distributions on the headsail and mainsail were calculated. These distributions were then used as an input for the inverse code. It was found that the difference in camber between the original sails and the calculated geometry is less than 0.01% of camber at the mid-span of the sails. The second part of the paper presents two methods for the design of optimal sails for a yacht. One of the methods uses the more traditional analysis approach, while the other employs the inverse method described in this paper. The optimisation is performed for a Transpac 52 yacht in 12 knots (6.5 m/s) of true wind speed to obtain the best velocity made good. Results from both methods are presented and discussed and it is found that the results in terms of boat speed are similar although the trims differ slightly. However, the new inverse method is approximately nine times faster than the traditional analysis approach.

Reference

Transactions RINA, Vol 158, Part B2, International Journal of Small Craft Technology, Jul-Dec 2016 

DOI Number

DOI No: 10.3940/rina.ijsct.2016.b2.156

Search and Order IJSCT papers

All International Journal of Small Craft Technology (IJSCT) papers are listed in the RINA Publications Database. You can search the database by author name and paper title. Publications may be ordered and paid for online. Other publications are also listed, some of which may be downloaded free of charge. Follow the link to Search Publications & Order.

Survitec July

Bentley Systems

JETS VAC - sept

Furuno June 2018

IQPC Smart Ships

METSTRADE

UBM April 4th 2018